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Large-eddy simulation of flow over a circular cylinder
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Abstract

We present wall-resolved large-eddy simulation of flow over
cylinder up to ReD = 105, based on the cylinder diameter D,
in the subcritical regime. The numerical method is fourth-
order finite-difference on a standard curvilinear O-grid. The
stretched-vortex sub-grid scale model is used in the whole do-
main, including regions of large-scale separated flow. The skin-
friction coefficient along the cylinder surface and its variation
with Reynolds number are well captured in comparison with
experiment. Proper separation behavior is observed.

Introduction

The flow of a Newtonian fluid over a cylinder is known to
exhibit an interesting range of physical phenomena. With in-
creasing ReD ≡ U∞ D/ν, the flow develops from steady and
stable with a closed wake, to two-dimensional and to three-
dimensional flow following wake transition, shear-layer tran-
sition and possible boundary-layer transition. Beyond some
critical Reynolds number ReC (around ReD = 103), the flow is
observed to become turbulent owing to Kelvin-Helmholtz in-
stability of the two shear layers that separate from the cylinder
surface. The flow with ReD = 3900 exceeds Rec and is perhaps
the most documented benchmark case in the literature. Some
experimental studies at this ReD focus on the character of the
near-wall flow including Norberg [1], who documents pressure-
coefficient measurements, while others, for example Lourenco
& Shih [2] report results for mean velocity and turbulent in-
tensity profiles in the near-wake region. In numerical simula-
tion, Beaudan [3] first emphasized this specific case. Subse-
quent work by Kravchenko & Moin[4] and You & Moin [5],
find a U-shape mean velocity profile inside the recirculation
bubble rather than a V-shape profile as measured in experiment
by Lourenco & Shih [2]. Ma et al. [6] discussed this contra-
diction by performing simulation using different span-wise do-
mains. Their mean velocity converges to a U-shape when using
Lz = πD, but to a V-shape for Lz = 2πD. Recently, Parnaudeau
et al. [7] performed both experiments and numerical simulation
that support the U-shape mean velocity profile. The issue re-
mains an open question.

Above ReC, the flow is typically characterized as having en-
tered the subcritical regime where turbulence in the wake flow
gets stronger and moves upstream with increasing ReD. In this
regime, some general tendencies can be observed for increas-
ing ReD, including increasing drag coefficient CD and shrinking
of the recirculation length. Weidman [8] studied the flow in
this the subcritical ReD range, finding that the pressure minima
are similar from ReD = 104 to 105. There are however, lim-
ited numerical simulation results available in this regime that
address the variation of the skin-friction C f around the cylin-
der surface. This is expected to be important for understanding
high Reynolds-number, bluff-body flows, where the near-wall
velocity gradient increases with ReD.

In the present study, we focus on the subcritical regime with
the goal of providing detailed information on C f (θ), where θ is
the cylinder surface angle measured from the nominal forward

stagnation point, and on related flow-separation behavior.

Numerical method and physical models

The governing equations for the present LES are the formally
filtered three-dimensional, incompressible Navier-Stokes equa-
tions:
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in which Tik is the unclosed stress tensor. In the present
large-eddy simulation (LES), this is computed using the ver-
sion of the stretched-vortex sub-grid stress model described by
Chung & Pullin [9]. In the above equations, Cartesian coordi-
nates (x,y,z) are used with corresponding velocity components
(u,v,w). In analyzing results, we also employ cylindrical co-
ordinates (θ,y,r), with x = −r cosθ, z = r sinθ and with y the
span-wise direction. Here −π < θ ≤ π and the corresponding
velocity components are (uθ,uy,ur),

The governing equations are spatially discretized in the com-
putational domain on a collocated mesh, on which pressure-
velocity coupling is achieved by the fractional step method [10].
In the predictor step, the convective and viscous terms are tem-
porally discretized by two-step Adams-Bashforth and fully im-
plicit schemes respectively. The pressure-Poisson equation on
the curvilinear coordinate grid is solved by a multigrid solver
with point- and line-relaxed Gauss-Seidel methods selectively
chosen as solvers as well as smoothers. The energy conserva-
tive, fourth-order scheme, designed to conserve energy in dis-
cretization [11], is used. Parallelization is implemented using a
standard MPI-protocol. To achieve near-optimal load balanc-
ing, the mesh is divided into blocks of equal size with each
block assigned to a unique processor. All LES were performed
on the Cray X86 supercomputer Shaheen at KAUST using up
to 2048 cores.

In the present LES, we employ a standard O-grid. The mesh
is stretched in the radial direction r, with minimum mesh size
close to the cylinder surface. In the other azimuthal (θ) and
span-wise (y) directions,the mesh is uniform. At the inlet, uni-
form flow (u,v,w) = (U∞,0,0) is imposed while at the outlet
plane, the convective outflow condition ∂u/∂t +UB∂u/∂x = 0
is used, in which UB is the bulk velocity. No-slip boundary
conditions are prescribed on the cylinder surface, and so the
present simulation are considered wall-resolved LES. Periodic
conditions are applied in the span-wise direction.

The stretched-vortex SGS model is based on the stretched-spiral
vortex model Lundgren[12]. It assumes that in each computa-
tional cell, the subgrid motion is dominated by a vortex with
direction ev, modeled by a delta-function probability density
function (PDF). The tensor is given as [9]:

Ti j = (δi j−ev
i ev

j)K, K =
∫

∞

kc

E(k)dk = K′0Γ[−1/3,κ2
c ]/2 (3)



Case ReD Nθ Ny Nr ∆rmin
C0 3.9K 256 64 256 1.6×10−3

F0 3.9K 384 96 384 1.2×10−3

C1 10K 384 96 256 10−3

C2 100K 768 192 384 3.7×10−4

Table 1: LES performed.K ≡ 103. Ni is the mesh number in the
‘i’ direction.
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Figure 1: ∆r+ for the four cases. •, C0 ; , F0; N, C1; H, C2.

with kc = π/∆c the cutoff wave-number and E the subgrid en-
ergy spectrum. In integration, Lundgren’s vortex model is used,
with K′0 = K0ε2/3λ

2/3
ν . Γ is the incomplete Gamma function

with κc = kcλν and λν = (2ν/(3|ã|))1/2. The rate-of-strain pa-
rameter ã = ev

i e j
i S̃i j is the stretching along the subgrid vortex

and S̃i j =
(
∂ũi/∂x j +∂ũ j/∂xi

)
/2 is the resolved strain-rate ten-

sor. By using a matching procedure, the composite parameter
K′0 can be found as K′0 = 〈F2〉/〈Q(κc,d)〉 where 〈〉 denotes a
local average and is computed from a set of local points. The
quantity F2 is the local second-order structure function, calcu-
lated from the resolved-scale velocities while Q(κc,d) is ap-
proximated using an asymptotic limit κc → 0 with d = r/∆c
and r the distance from a neighboring point to the vortex axis.

Cases and results

In the present LES, all cases employ the same domain: Ly = 3D
and Lr = 40D. Cases and corresponding meshes are listed in
Table 1, which also shows the minimal mesh size in the wall
normal direction. This is the size of the first mesh off the cylin-
der surface. In order to understand how well the present LES
resolves the near-wall flow, a character parameter ∆r+, which
is the ratio of ∆rmin to the wall unit length ν/uτ, is plotted in
figure 1.

Case 0: Re=3900

We compare the present LES with the experimental data of [7],
the LES results of [3] and DNS results (case II) of [6]. The pres-
sure coefficient Cp is shown in figure 2(a) where it can be seen
that all results agree reasonably well. The relative difference be-
tween the present LES and the experimental data is roughly 3%
at about 70◦. The difference between coarse mesh case C0 and
fine mesh case C1 is small. Additionally we compare C f θ along
the cylinder surface with experiment and DNS in figure 2(b)
where

C f θ =
duθ

dr

∣∣∣∣
r=0

, (4)

and we note that presently, C f θ is evaluated using only the radial
derivative of uθ, the velocity component along the tangential di-
rection. We note that C f θ at Re = 3900 is not directly measured
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Figure 2: Comparison of pressure coefficient and skin friction
coefficient. , C0; , F0; , experiments by [1];
◦ , experiments by [13]; , LES by [3] , DNS by
[6].

by Son & Hanratty [13]. Instead, in experiment they measured
C f θ at a series of cases with ReD ranging from 5000 to 105. Us-
ing this data they found that C f θ at the front of the cylinder can

be rescaled using Re1/2
D . In other words, C f θRe1/2

D = Const.
Using this analogy, we have obtained an estimate of C f θ at
Re = 3900 from experiment results at Re = 5000.

The C f θ distribution in present simulation shows good agree-
ment with the above estimate except in the region around θ =
50◦, where all simulation results are somewhat smaller than
measurement. In the closeup inset of 2(b), we can see that
all three simulations show a secondary separation bubble whose
size and location differs for the three cases shown. Son & Han-
ratty [13] found that the separation angle for the secondary bub-
ble decreases with increasing Reynolds number. At ReD = 5000
it is about 120◦. Extrapolating their results suggests a separa-
tion angle slightly larger than 120◦ at Re = 3900 . In the present
LES the separation of the secondary bubble, agrees well with
this experiment, and takes place at an angle of 120◦. This angle
is definitely larger than 110◦ seen in other simulation results.

Although the issue of V-shape versus U-shape of the mean
stream-wise velocity is still not resolved, we note that both
the cited experiment and simulations with Lz = πD find a U-
shape profile. From figure 3(a), we can conclude that the differ-
ences between different simulation results and experiment are
small and at approximately the same level. The present LES
agrees quite well with the results of Kravchenko & Moin [4]
except at around y/D = 0. Near the centerline y/D = 0, the
present LES matches the valley value from experiments. In fig-
ure 3(b), we compare the stream-wise turbulent intensity u′u′
profiles of experiment and numerical simulation. All simula-
tion results deviate substantially from the measurements in the
region y/d ∈ (−0.5,0.5). The present LES agree in the profile
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Figure 3: Comparison of steamwise velocity and turbulent in-
tensity. �, experiments by [7]; , C0; , LES by
[4]; , DNS by [6].

shape with the simulation result of Kravchenko & Moin [4].

Subcritical regime: case 1 and case 2

LES for Re= 104 and 105, as listed in the table were performed.
Here we plot another measurement of skin-friction, which is de-
fined based on the average of absolute value of velocity gradient
along the θ direction:

C f |θ| =
d|uθ|

dr

∣∣∣∣
r=0

. (5)

This skin friction coefficient, will give values similar to C f θ

over the windward part of the cylinder surface where the flow is
typically attached without reverse velocities, but rather different
results near separation and in the well-separated region. This is
because strong fluctuations in the separated flow region will af-
fect C f |θ| but not C f θ . In Figure 4, we compare C f |θ| with |C f θ|
to show this difference. It can be seen that, for ReD = 104,105,
C f θ on that part of the cylinder surface where the flow has sepa-
rated still shows reasonably small values, which are comparable
to values for ReD = 3900. In contrast, C f |θ| in the separated re-
gion shows a monotonically increasing tendency with increas-
ing θ.

It is also of interest to examine an instantaneous field for skin-
friction. In Figure 5, we compare instantaneous wall shear
stress components τwθ and τwy for the two Reynolds numbers.
For both cases, we find that τwy is either very small or zero over
the windward part of cylinder, which indicates small instanta-
neous span-wise velocities very near the wall. In the separated
region, the fluctuation is quite strong. For ReD = 104, the maxi-
mum fluctuation in τwy is of similar order to the maximum value
for τwθ over the front part of the cylinder while for ReD = 105,
the former is a factor of two times the latter.
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Figure 4: Comparison of skin-friction coefficients: C f |θ| with
|C f θ|.
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Figure 5: Comparison of instantaneous wall shear stress.



Conclusions

In the present study, we describe an LES study of flow past a
circular cylinder. For ReD = 3900 some detailed comparisons
with existing simulations and experiments are given, while for
Re = 104 and Re = 105 the present LES give some indication
of the effect of ReD on flow properties. It is found that fluctu-
ations of the instantaneous C f θ in the separated region increase
substantially with increasing Reynolds number while its time
or span-wise average value remains reasonably small. It is also
shown that C f |θ| can be a useful measurement of fluctuations in
the skin friction coefficient. At large ReD these fluctuations can
be severe on the cylinder surface in the separated-flow region.
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